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First-Order Nonlinear Theory in Hexagonal

Ferrites with Planar Anisotropy under

Perpendicular Pumping

JOSEPH HELSZAJN, MEMBER, IEEE, AND JOHN MCSTAY

Abstract—The first-order spinwave instability under perpendicu-

lar pumping at large signal power in an hexagonal ferrite ellipsoid
with planar anisotropy biased in the easy plane is studied. The non-
linear coupliig coefficient is obtained in terms of the physical vari-
ables of the unstable spinwaves and the uniform mode magnetization
such as the orientation and ellipticity of the unstable spinwaves, the
coordinates of the spinwave propagation vector k, and the uniform
mode ellipticity. Results obtained using a computer in the case of a
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sphere are included. Also included are experimental results on the
coincidence region with the dc field in the easy plane and with the dc
field out of the easy plane. This latter arrangement leads to a new
tunable coincidence liiiter.

1. INTRODUCTION

T
HE first- and second-order nonlinear behavior in

isotropic ferrites under perpendicular pumping at

large signal power due to spinwave instabilities are

well known [1 ]– [5 ]. The first-order nonlinear process

is usually the more important one and is the only one

considered in this paper. This instability gives rise to an

additional subsidiary resonance peak below the mag-
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netic field required for the main resonance. Under some

circumstances it is also possible for the subsidiary reso-

nance and the main resonance to occur simultaneously.

The critical RF magnetic field threshold is then particu-

larly low (coincidence limiting). The onset of spinwave

instability at the subsidiary resonance peak arises from

parametric coupling between the uniform mode and

spinwaves. The important spinwaves are those which

are synchronous with half the excitation frequency.

The theory of spinwave instability in anisotropic

ferrites with planar anisotropy biased in the easy plane

has also been described, but the instability threshold has

not been minimized [6], [7]. These planar ferrites

possess an easy plane of magnetization perpendicular to

the C axis of the crystal [8]. This effective planar aniso-

tropy field alters the isotropic linear parts of both the

uniform mode of magnetization and the spinwave

modes, and also the nonlinear coupling between the two.

In addition, the propagation vector k of the unstable

spinwave for this form of instability has now an azi-

muthal dependence @~ in addition to the usual polar

dependence Ok.

The usual theory combines the nonlinear coupled

component equations of the transverse part of the equa-

tion of motion into a single equation with the help of

complex variables. Since the normal variables are in

general elliptical a Holstein–Primakoff transformation is

then required to reduce the equation to a normal form

in terms of circular variables [9]. The disadvantage of

this method is that it moves the final result through two

transformations from the physical problem.

The purpose of this paper is to develop the theory of

spinwave instability in planar ferrites in terms of the

physical variables of the spinwave and uniform normal

modes. The final transformation to circular variables is

thereby simplified and the important physical param-

eters, i.e., the orientation and ellipticity of the unstable

spinwaves, the coordinates of the spinwave propagation

vector k, and the uniform mode ellipticity, appear ex-

plicitly in the final transformation.

The instability threshold has been minimized using

a computer for the case of a sphere with the effective

anisotropy field as a variable and butterfly curves have

been obtained. As the dc field is increased from zero, the

butterfly curve consists of two branches which corre-

spond to the two regions obtained from the dispersion

relation in which the unstable spinwaves have either

k #O or k = O. The spinwaves with k + O propagate in the

easy plane at about 45° with respect to the dc field. The

spinwaves with k = O propagate in the easy plane with

an angle less than 45° with respect to the dc field. The

dispersion relation ceases to yield a real value of b when

the angle between the dc field and the unstable spin-

waves approaches zero.

The primary effect of increasing the effective aniso-

tropy field is to lower the RF threshold for spinwave

instability, and to shift the dc field corresponding to the

minimum of the butterfly curve from below that re-

auired for ferrimasmetic resonance to the coincidence
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Fig. 1. Rectangular coordinate system.

region and finally to a dc field larger than that required

for the main resonance.

II. NONLINEAR EQUATION OF MOTION

The equation of motion of the magnetization is

3=– ~(~ X ~) + dissipation term (1)

where ~ is the total magnetization, ~ is the total mag-

netic field, and ~ is the gyromagnetic ratio. The dissipa-

tion term will be introduced phenomenologically later

on by adding an imaginary part to the frequency,

Following Suhl the deviation of the magnetization due

to the exchange field is expanded in a Fourier series of

spinwaves

where ~0 is the dc magnetization, ~. is the RF mag-

netization, %k is the spinwave magnetization, and P is a

radius vector. Hereafter, the time and spatial depen-

dence of the magnetization will be taken for granted.

The total magnetic field in the case of a spheroid in

terms of the rectangular coordinate system in Fig. 1 is

given by

E = no+ k + Eel.. + kcl.. + ~e. + ~di. + E.. (3)

The first four terms are the usual dc field, RF field, and

demagnetizing fields. The effective exchange field ~,.

is derived from the exchange energy, which is an energy

of electrostatic origin and has no classical counterpart.

The dipolar field ~di~ is a demagnetizing field which is

derived from Maxwell’s equation boundary conditions

being neglected, The last field is the effective anisotronv
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fieid ~aduetot heplanara nisotropyof the ferrite ma-

terial. For a hexagonal single crystal ferrite with the

easy plane in the y–z plane and the hard axis along the

x coordinate, the effective anisotropy field consists of

two terms; one proportional to the x component of the

uniform mode magnetization, and the other propor-

tional to the x component of the spinwave magnetiza-

tion. This last effective field modifies the linear parts of

both the uniform mode and the spinwave modes, and

also the nonlinear coupling between the two. It is this

effective field that we shall study in this paper.

In component form the fields in (3) are

o
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If the spinwave amplitudes are all assumed to be

much smaller than the amplitude of the uniform mode,

the longitudinal component tm, can be given in terms

of the transverse components because the magnetization

in any small volume is conserved.

/ \2

+(MO+:z%kz). (11)
\ k+ o /

Equating the spatially varying terms we have

As long as this approximation is valid, it is sufficient to

consider a single typical spinwave term and we will

(5) hereafter omit the summation sign for clarity and sim-

plicity. If we expand the equation of motion, omit higher

order powers of the spinwave amplitude, and write m~.

in terms of mk$ and m~v with the help of (12) we obtain

(6) (tio~ + ti~~) = - m~(ao – ~,ti~ + ~KO~) + POLO~%

— %kv(COO – NA% + ku2k–2co~+ c%)

— mkzkzkUk–2w~ + m~Jktkzk--2uJ -mz
M.

(7)

(13)

(lo)

where we have assumed that AfO>>mO,.

Here N, and Ns are transverse and longitudinal dc

demagnetizing factors, a is the lattice constant, and k.,

kv, and ks are wavenumbers along the axis of the coordi-

nate system shown in Fig. 1.

Equations (13) and (14) are the nonlinear transverse

component equations of the magnetization. These

equations can be divided into three parts: terms involv-

ing the uniform mode, terms involving the linear part

of the spinwave mode, and nonlinear termls proportional

to the first-order of the uniform mode amplitude.
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Fig. 2. Uniform mode ellipse intransverse plane at resonance.

III. UNIFORM MODE

The uniform part of the nonlinear equation of mag-

netization can be obtained from (13) and (14) by equat-

ing the nonspatially varying terms. It is assumed that

the RF field is in the easy plane. We therefore have

?zZ= O, k. =k~ sin cd.Hence

‘“x=(-R’2’Ocos”t(15)

“=%”ul,)h”sin”’‘“)
where

and

Cdz = (co”– N,%+ N,%+ (%) (19)

cog = (co”– N.%+ N,%). (20)

In the preceding equations, co, is the well-known

Kittel resonance frequency and e“ is the uniform mode

ellipticity at the main resonance. The uniform mode

ellipse is shown in Fig. 2. The uniform mode ellipticity

is given in [10] as a function of WO/U for parametric

values coa/u for the relevant range of this work.

IV. LINEAR PART OF SPINWAVE EQUATIONS

The linear part of the spinwave equation is from (13)

and (14) given by

I \
Fig. 3. Spinwave ellipse in transverse plane.

tik. = m,z(wo – N,oJ~ + a~kz2k-2 + uex + WJ

+ m~.(co~k~kuk-’). (22)

The preceding equations are the same as those found id

the case of parallel pumping [11]. The general solution

to these equations is of the form of an ellipse with the

major axis tilted through an angle Tk, as shown in Fig. 3.

The minor axis of the ellipse is orientated along the

direction of maximum internal demagnetizing field.

This solution has been shown to be considerably

simplified if a coordinate transformation is introduced

which aligns the ellipse with a new coordinate system

whose axes are rotated by the angle r~. The result is

Chlz’ 112()m~z, = — ak co~ OIkt
tik

(23)

(24)

where

and ah is an amplitude constant. The last equation is the

well-known dispersion relation.

The ratio of the minor axis to the major axis of the

ellipse is given by

ck12’ 112()f?k=—
ck21’ “

(26)
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rnh = IiOk??i?k+ ‘%k* j fk] VLO (32)

Wherefk the coupling coefficient is given by

+(:-: )cosd}’’’;sikcos”s” ’33)

LIMLSZ,AJ N ANIJ NIL,b 1A Y : NUN LINl!,AK lkiliUK Y lN HMXAW.)NAL H k!JKK1 lb>

Ck12’ and C~2~’ are given in terms of the original variables

in [11].

V. FIRST-ORDER SPINWAVE INSTABILITY

The first-order nonlinear spinwave instability is

usually the most important one because the amplitude

of the uniform mode is usually quite small even in the

nonlinear region. Introducing the coordinate transfor-

mation developed in [11 ] into the first-order nonlinear

equations gives

{[?&# = – c~’’’f?%k~t +??t~zf %Oz – sin (~rk–@k)]

+% Ov[cos (zTk– Ok)]} & sin Ok cos L%

+%kvr {%o~[c& @k– co’ (zr~–~k)]

+mw[sin q5~– sin (z7h–I#)k)] } -& sin L9kcos & (27)

[[?’&! = c~’’’–~lk%! ??tOzcos @k+ cos (zTk– h)]

+mOg[sln ~k+’in (zTk–@k)] ] ~ ‘in Ok co’ h

‘mk~’{mo~[-sin (2Tk-@k)]

+f?tov [cOs (2Tk – ~k) ] } ‘M: sin Ok CO’ & (28)

In this paper the various nonlinear thresholds are ob-

tained in terms of the components along the minor axis

Nonsynchronous terms have been omitted in (33).

Hence the important spinwaves are those that are syn-

chronous with half the frequency of the R.F excitation.

An approximate solution to (32) is of the form

mk exp (;(ti/2 +;K)t), where K is an adjustable param-

eter to be determined. Substituting this approximate

solution into (32) we obtain the standard result for the

instability threshold

,mol ,,> [(ok- ;}+(%?l”z ,34,or1

/f,&l —

where we have taken the damping of the spinwave into

account by adding a positive imaginary part yAHk/2 to

(h)k,where AHh is the spinwave linewidth. ‘we now write

I mol in terms of I ?z,I with the help of (31); hence

2[(”k-:Y+(%m1’2[@T2-@2)2+4”r2(%T11’2 .I l’ZO Icrit =
/Jo@m I fk I

(35)

of the spinwave ellipse.

By introducing complex variables the relation be-

tween the transverse components of magnetization of

the uniform mode is given from (15) and (16)

mOz = (mo + mO*) (29)

‘Ou=(Z)~iOmo*)= mOYemO* ’30)
where

‘0=(-27uT,)%-
(31)

mO* is the complex conjugate equation, and e = (u/a,)eO.

The relation between the transverse components of

magnetization of the linear part of the spinwave mode

is given from (23) and (24).

Using the preceding identities the nonlinear coupled

equations can be reduced to a single equation given by

In the last equation the damping to the uniform mode

is accounted for by introducing a positive imaginary

part -yAH/2 to COrin (31), where AH is the uniform mode

linewidth. From the numerator of (35) we see that

2@= w, or u,= co, or both conditions produce a sharp

reduction in I ho] ~rit.

VI. MINIMIZATION PROCEDURE

In order to find the lowest threshold we have to mini-

mize the right-hand side of (35) as the applied dc field

is varied subject to the side condition ~h = a/2.

From the dispersion relation at the subsidiary reso-

nance we have

—+(d.bnsin2 Ok + %) — (@O + ~@m). (36)

As the applied field is increased from zero the disper-

sion relation consists of two regions where k #O and

k=O.
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Equation (35) has been minimized using a computer

in the case of a sphere as a function of the dc field uO/U

for parametric values of us/w with u~/a = 0.6 subject to

the frequency condition given by (36). The computer

printout included Ok, tik, c&, ek, u,, WO, eo, and fk. In the

region where k #O the frequency relation involves k,

8~, and @k.

The coordinates of the unstable spinwaves in the two

regions where k #O and k = O are shown in Fig. 4. In the

region where k #O, the unstable spinwave propagates in

the easy plane (Ok = 90°) with Ok approximately given

by Ok = 45”.

In the region where k = O, the allowed values of Ok

and ~~ are uniquely related by (36) with co,== O once the

dc field is stated. In this region the minimum of the

butterfly curve occurred with q5~= 90° also and with 6h

determined from the frequency relation by

u’
— – (.O – N. Cd,.)(q – N... + CD=)
A

The dispersion relation ceases to yield a real value for

k with 6k = O at a magnetic field given by

—O)a + d%’ + (!J2
W. =

+ Nzwn.
2

(38)

This last equation provides a convenient rule for the

existence of the subsidiary resonance.
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Fig. 5. L’nstable spinwave ellipticity as a function of dc field QO/co

with UJU = 0.60.

The unstable spinwave ellipticity is shown in Fig. 5.

Fig. 6 shows the RF threshold as a function of the reso-

nant field w,/w for parametric values of w./w with w~/w

= 0.6. Fig. 7 shows the same quantities as a function of

the dc field wo/w. From these two graphs we see that

one effect of the anisotropy field is to lower the RF

threshold field. Another effect is to shift the minimum

of the butterfly curve from a dc field below that required

for the main resonance through the coincidence region

to a dc field larger than that required for the main reso-

nance. In the coincidence region the butterfly curve is

seen to go to zero. This occurs because we have omitted

the uniform mode damping 7AH/2 in our calculations.

In the easy plane fk is given with rk = 0° for Wa/W

> cdm sinz e~/w, and with Tk = 90° for w./w <con sin2 6k/ti.

For wa/u = wn sin2 19k/u the spinwave ellipticity is unity

and fk is independent of Tk.

For aa/u > ti~ sinz O,/w, (33) becomes

fk = (1 + e-’ek-’) ~ sin @kCOS%. (39)

VII. COINCIDENCE OF SUBSIDIARY AND

MAIN RESONANCES

As we can see from Fig. 7, it is possible for certain

configurations to Satisfy the condition Uk = u/2 simul-

taneously with w,= w. The critical field for the onset of

the spinwave instability is then particularly low. Such

limiting has been reported in single crystal YIG
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[12], [13]. The lowest threshold now occurs at the [~~Nt(U~ATt+~.)]1/2<~
main resonance and causes a reduction of the suscepti-

bility at resonance. This is clearly shown in Fig. 7. For

the coincidence condition to hold we must satisfy the ‘%.$+4 [’+(s) ’1’2}1’2 ’40)

frequency condition given by (36) with Ok= O. This Equation (40) shows that the effect of the anisotropy

condition is only satisfied at low frequencies. Since the field is to reduce the coincidence region. Fig. 8 shows the

sample must be magnetically saturated the frequency coincidence region obtained for a sample of Mn–Zn2Y

range of application is [6], [15] single crystal ferrite biased in the easy plane. The ma-
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terial used was an Mn substituted ZnzY single crystal

ferrite sphere with AH=716 Am–l, MO=0.24 Win-2,

H.=783.8kAm–’, andy=2.060 X105 rads–l/Am–l.

For a linearly polarized wave in the easy plane, the

RF threshold is

I ho lorii =

2AHAHk

(1 + eO-’e~-’)MpOpO “
(41)

Coordinates for bias out of easy plane.

can be used to obtain the spinwave line-Equation (41)

width.

An approximate equation for the critical field in the

coincidence region has also been given in [6]. However,

it is not possible to make a direct comparison with it be-

cause the geometric factor A given in this reference does

not coincide with the magnetic quantities used here.

An absolute value for AHk has not been obtained be-

cause the authors did not obtain AH in the coincidence

region. It is well known that the uniform mode line-

width is a function of the direct magnetic field [16],

[17], [18].

VII I. COINCIDENCE OF SUBSIDIARY AND

MAIN RESONANCES WITH THE DC

FIELD OUT OF THE EASY PLANE

It is also possible to obtain coincidence limiting in

planar single crystal ferrite spheres biased out of the

easy plane. This leads to a new tunable coincidence

limiter. In the experimental arrangement considered

here the dc field HO makes an angle (3 with the easy plane

of the crystal which is assumed to be in the y–z’ plane

and the c axis of the crystal lies along the x’ axis of the

coordinate system, shown in Fig. 9. The prime coordi-

nate introduced here is not to be mistaken with the one
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Fig. 10. Coincidence region for Mn-Zn,Y ferrite sphere biased out
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Fig. 11. Coincidence threshold in Mn–ZnzY ferrite sphere biased
out of easy plane.

introducecl in connection with Fig. 3. With this arrange-

ment the magnetization MO is no longer in the easy

plane but makes ananglea to it, wherein the case of a

sphere a is determined by [14]

2H0 sin (B – a) = H. sin 2a. (42)

In the perpendicular pump arrangement the RF field

is perpendicular to the magnetization Lfo. In what fol-

lows the resultant direction of JIO is therefore taken

along the unprimed z axis in Fig. 9. This means that

the unprimed transverse plane makes an imgle a to the

c axis of the crystal. In the plane perpendicular to the

magnetization the linear parts of the spinwave and uni-

form modes have the same form as when the dc mag-

netization is in the easy plane provided new effective

dc and anisotropy fields are defined [10], [11].

IIo’ = Ho cos (/3 – a) – IIa sin’~ a (43)

Ha’ = Ha COS2 a. (44)

Tilting the dc field out of the easy plane therefore alters

the spinwave dispersion relation and Kittel’s resonance

frequency.

In calculating the coincidence region it: has been as-

sumed that the spinwave that first becomes unstable in

the unprimed transverse plane has the same coordinates

as in the case when the dc field is in the easy plane. The

coincidence region is therefore given by (40) with cw

and WO replaced by u.’ and wO’.

For the Mn–ZnzY single crystal ferrites studied in this

paper the coincidence region extends from 7550 to

9000 lLfHz when the dc field is in the easy plane and from

2900 to 4350 MHz when the dc field is perpendicular

to the easy plane. This is shown in Fig. 10. When the

dc field is perpendicular to the easy plane it is of the

order of the effective anisotropy field.

Fig. 11 shows the experimental coincidence region ob-

tained with an Mn–Zn2Y single crystal ferrite sphere for

three different values of ~. In the arrangement used the

RF field was in the easy plane along the y axis of the

crystal.

IX. CONCLUSIONS

The onset of the nonlinear spinwave instability at

large RF power which can occur in hexagonal ferrites

with planar anisotropy has been derived. ‘This has been

done in a simple way in terms of the physical variables

of the uniform and spinwave normal mocles. The mea-

sured coincidence region is in good agreement with the

theoretical results. Coincidence measurements are also

given with the dc field out of the easy plane. This leads

to a new tunable coincidence limiter.
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An Improved Equivalent Circuit for the Thin-

Film Lumped-Element Circulator

REINHARD H. KNERR, MEMBER, JEEE

Absfract—A program written for the Hewlett-Packard automatic
network analyzer permits the 5’-parameter eigenvalue phases and

magnitudes to be dkplayed. The thus measured eigenvalues of a
lumped-element circulator lead to an improved equivalent circuit
which explains the observed “double hump” characteristic. The
influence of dhterent circuit parameters on the eigenvalues is mea-
sured and found in good agreement with the author% previously
published theory. It is concluded from this theory and the measure-

ments that, for the 10SSYcirculator in general, mazimum isolation,
return loss, and minimum forward loss do not occur at the same fre-

quency.

1. INTRODUCTION

I

N A PREVIOUS PAPER [1] the author developed

a theory on the thin-film lumped-element circulator

using the eigenvalue analysis [2]. The computer

results which were obtained from this theory improved

our understanding of circulators in general and were

applied to a new broad-banding principle [1 ], as well as

to a new switching principle for circulators [3].

The availability of a computerized network analyzer

has since made it practical to measure eigenvalue phases

and magnitudes as a function of frequency using the

proper computer program. These measurements have

permitted the principal results of the theory to be veri-

fied and have revealed additional information that has

led to an improved equivalent circuit for the thin-film

Manuscript received September 15, 1972; revised January 21,
1972.
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lumped-element circulator. Furthermore, the study has

advanced our understanding of the losses in the lumped-

element circulator and has permitted us to draw conclu-

sions as to the behavior of Iossy circulators in general.

II. COMPARISON OF THE EXPERIMENTAL LUMPED-

ELEMENT CIRCULATOR WITH THE CALCULATION

FOR THE EARLIER EQUITTALENT CIRCUIT

The broad-band thin-film lumped-element circulator

(described in a previous paper by the author [1]) is

shown schematically y in Fig. 1. I t uses the crossover

capacitances as the sole means of resonating the circu-

lator junction. Broad-band behavior is achieved with a

capacitor formed by the dielectric layer between the

metal film and ground plane of Fig. 1. This capacitor is

designated CO in Fig. 2, which shows the approximate

equivalent circuit of the structure in Fig. 1. The cross-

over capacitances are represented by the discrete ca-

pacitors Cl, while the split conductors of Fig. 1 are de-

lineated by the inductors L, which are functions of the

angular frequency w, the geometry factor [1] G, the

saturation magnetization, and the applied magnetic

biasing field Hal..

From this structure and its analysis [1] it was de-

duced that the capacitor CO influences only the eigen-

value of the in-phase excitation, and the capacitors Cl,

i.e., the crossover capacitances, influence only the eigen-

values due to the rotating excitations or eigenvectors.

(For details on eigenvalues and eigenvectors see the


