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First-Order Nonlinear Theory in Hexagonal
Ferrites with Planar Anisotropy under
Perpendicular Pumping

JOSEPH HELSZAJN, MEMBER, IEEE, AND JOHN MCSTAY

Abstract—The first-order spinwave instability under perpendicu~
lar pumping at large signal power in an hexagonal ferrite ellipsoid
with planar anisotropy biased in the easy plane is studied. The non-
linear coupling coefficient is obtained in terms of the physical vari-
ables of the unstable spinwaves and the uniform mode magnetization
such as the orientation and ellipticity of the unstable spinwaves, the
coordinates of the spinwave propagation vector k, and the uniform
mode ellipticity. Results obtained using a computer in the case of a
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sphere are included. Also included are experimental results on the
coincidence region with the dc field in the easy plane and with the dc
field out of the easy plane. This latter arrangement leads to a new
tunable coincidence limiter.

I. INTRODUCTION

HE first- and second-order nonlinear behavior in
T isotropic ferrites under perpendicular pumping at

large signal power due to spinwave instabilities are
well known [1]-[5]. The first-order nonlinear process
is usually the more important one and is the only one
considered in this paper. This instability gives rise to an
additional subsidiary resonance peak below the mag-
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netic field required for the main resonance. Under some
circumstances it is also possible for the subsidiary reso-
nance and the main resonance to occur simultaneously.
The critical RF magnetic field threshold is then particu-
larly low (coincidence limiting). The onset of spinwave
instability at the subsidiary resonance peak arises from
parametric coupling between the uniform mode and
spinwaves. The important spinwaves are those which
are synchronous with half the excitation frequency.

The theory of spinwave instability in anisotropic
ferrites with planar anisotropy biased in the easy plane
has also been described, but the instability threshold has
not been minimized [6], [7]. These planar ferrites
possess an easy plane of magnetization perpendicular to
the C axis of the crystal [8]. This effective planar aniso-
tropy field alters the isotropic linear parts of both the
uniform mode . of magnetization and the spinwave
modes, and also the nonlinear coupling between the two.
In addition, the propagation vector k of the unstable
spinwave for this form of instability has now an azi-
muthal dependence ¢ in addition to the usual polar
dependence 0.

The usual theory combines the nonlinear coupled
component equations of the transverse part of the equa-
tion of motion into a single equation with the help of
complex variables. Since the normal variables are in
general elliptical a Holstein—Primakoff transformation is
then required to reduce the equation to a normal form
in terms of circular variables [9]. The disadvantage of
this method is that it moves the final result through two
transformations from the physical problem.

The purpose of this paper is to develop the theory of
spinwave instability in planar ferrites in terms of the
physical variables of the spinwave and uniform normal
modes. The final transformation to circular variables is
thereby simplified and the important physical param-
eters, i.e., the orientation and ellipticity of the unstable
spinwaves, the coordinates of the spinwave propagation
vector k, and the uniform mode ellipticity, appear ex-
plicitly in the final transformation.

The instability threshold has been minimized using
a computer for the case of a sphere with the effective
anisotropy field as a variable and butterfly curves have
been obtained. As the dc field is increased from zero, the
butterfly curve consists of two branches which corre-
spond to the two regions obtained from the dispersion
relation in which the unstable spinwaves have either
k0 or £ =0. The spinwaves with k0 propagate in the
easy plane at about 45° with respect to the dc field. The
spinwaves with £=0 propagate in the easy plane with
an angle less than 45° with respect to the dc field. The
dispersion relation ceases to yield a real value of 2 when
the angle between the dc field and the unstable spin-
waves approaches zero.

The primary effect of increasing the effective aniso-
tropy field is to lower the RF threshold for spinwave
instability, and to shift the dc field corresponding to the
minimum of the butterfly curve from below that re-
quired for ferrimagnetic resonance to the coincidence
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Fig. 1. Rectangular coordinate system.

region and finally to a dc field larger than that required
for the main resonance.

I1I. NoNLINEAR EQUATION OF MoOTION
The equation of motion of the magnetization is
M = — v(M X H) + dissipation term '6))

where M is the total magnetization, H is the total mag-
netic field, and v is the gyromagnetic ratio. The dissipa-
tion term will be introduced phenomenologically later
on by adding an imaginary part to the frequency.

Following Suhl the deviation of the magnetization due
to the exchange field is expanded in a Fourier series of
spinwaves

M = Mo+ moeist + 3 ilgei -Trose (2)
k0
where M, is the dc magnetization, #, is the RF mag-
netization, #% is the spinwave magnetization, and # is a
radius vector. Hereafter, the time and spatial depen-
dence of the magnetization will be taken for granted.
The total magnetic field in the case of a spheroid in
terms of the rectangular coordinate system in Fig. 1 is
given by

7—{_ = EO + ]Z + Hdem + };dem + Hex _I_ Edip -+ Tl—a- (3)

The first four terms are the usual dc field, RF field, and
demagnetizing fields. The effective exchange field Hex
is derived from the exchange energy, which is an energy
of electrostatic origin and has no classical counterpart.
The dipolar field Hysp is a demagnetizing field which is
derived from Maxwell's equation boundary conditions
being neglected. The last field is the effective anisotropy



HELSZAJN AND MCSTAY: NONLINEAR THEORY IN HEXAGONAL FERRITES

fieid H, due to the planar anisotropy of the ferrite ma-
terial. For a hexagonal single crystal ferrite with the
easy plane in the y—2 plane and the hard axis along the
x coordinate, the effective anisotropy field consists of
two terms; one proportional to the x component of the
uniform mode magnetization, and the other propor-
tional to the x component of the spinwave magnetiza-
tion. This last effective field modifies the linear parts of
both the uniform mode and the spinwave modes, and
also the nonlinear coupling between the two. It is this
effective field that we shall study in this paper.
In component form the fields in (3) are

0
Hy=|0 )
L m,
_hz"
h=ih, (5)
L0
- 0 7
Hdem - - (6)
N, e
L Mo
v, Mo
o
ﬁdem = - N MO (7)
,—
Mo
- 0 ]
Z k2,
=<0
— H..a?
= — "; > by, (8)
0 k=0
L > ki,
k<0
B Mz My, M\ ]
3 kb (kl L —k—>
ks£0 Mo Mo Mo
— M m Mo
Hayp = — Z kyk~? (kz : + ky“E + &, k> (9
k=0 Mo Mo Mo
My My, Vi
ZkJrﬂ(k,, Yok g, ’“)
L 40 Mo Mo Mo /]
M“ (mos + mis)
Ho=—| . (10)
[ 0

where we have assumed that M >>m,.

Here N, and N, are transverse and longitudinal dc
demagnetizing factors, ¢ is the lattice constant, and k.,
k,, and k. are wavenumbers along the axis of the coordi-
nate system shown in Fig. 1.
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If the spinwave amplitudes are all assumed to be
much smaller than the amplitude of the uniform mode,
the longitudinal component #,, can be given in terms
of the transverse components because the magnetization
in any small volume is conserved.

M= (mm + > mkz) + (moy + 2 Wa)

20 20

+ (Mo + 2 m,cz>2. (11)

kz0

Equating the spatially varying terms we have

1 —
>y = — ——<m0x D e + oy mky)- (12)

k540 M, k0 kg0

As long as this approximation is valid, it is sufficient to
consider a single typical spinwave terrn and we will
hereafter omit the summation sign for clarity and sim-
plicity. If we expand the equation of motion, omit higher
order powers of the spinwave amplitude, and write m,
in terms of my, and my, with the help of (12) we obtain

2W0m + N twm) + :uowmhll
cm T+ k2l w0 + wex)

(thos + tas) = — moy(wo —
—_ mky(CUO —

oy

- mkzkzkuk_2wm + mkz<k:ckzk_2wm) '_AZ,—

0

+ iy 2yl w0) —o

Moy
M,

o Moz
+ mkz(kykzk_~wm) 3‘1— (13)

0
(iroy + 1i1ry) = moe(wo — Nowm + Nwm + @a) — pownkiz

-+ mkm(wo — Nownm + k2 0m + wex -+ wa)
Moz

F Mg leaey 2o — iy (o lesk0m) -

0

Moz
— M (2lpk b 20m) —
0

iy (o ol—om)
- k oz m) T
Y M,

(14)

where

M,

on =1 o =7vH,
Mo

Wex = Y Hex0k2,

and

W = 'YHa'

Equations (13) and (14) are the nonlinear transverse
component equations of the magnetization. These
equations can be divided into three parts: terms involv-
ing the uniform mode, terms involving the linear part
of the spinwave mode, and nonlinear terms proportional
to the first-order of the uniform mode amplitude.
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Fig. 2. Uniform mode ellipse in transverse plane at resonance.

JII. UNiFORM MODE

The uniform part of the nonlinear equation of mag-
netization can be obtained from (13) and (14) by equat-
ing the nonspatially varying terms. It is assumed that
the RF field is in the easy plane. We therefore have
h:=0, h,=h, sin wt. Hence

MoWm®

Moy = <m> ho cos wi (15)
‘ 1 MoWmWr .
Moy = Z (m) ho sin wi (16)
where
Wt = Wy an
602 = _w_ll_ (18)
Wy
and
wy = (o — Nywm + Nwn + ) (19)
(,l)y = (0)0 - Nzwm + lem) (20)

In the preceding equations, w, is the well-known
Kittel resonance frequency and e, is the uniform mode
ellipticity at the main resonance. The uniform mode
ellipse is shown in Fig. 2. The uniform mode ellipticity
is given in [10] as a function of we/w for parametric
values ws/w for the relevant range of this work.

IV. LINEAR PART OF SPINWAVE EQUATIONS

The linear part of the spinwave equation is from (13)
and (14) given by
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Fig. 3. Spinwave ellipse in transverse plane.

g = — May(wo — Nowm + omky? 272 + ex)
) @1)
Wity = Myp(@Wo — Nywom + wmb:?h% + wex + wa)
& g (ool ). (22)

The preceding equations are the same as those found in
the case of parallel pumping [11]. The general solution
to these equations is of the form of an ellipse with the
major axis tilted through an angle 74, as shown in Fig. 3.
The minor axis of the ellipse is orientated along the
direction of maximum internal demagnetizing field.
This solution has been shown to be considerably
simplified if a coordinate transformation is introduced
which aligns the ellipse with a new coordinate system
whose axes are rotated by the angle 75. The result is

Cpre\1/2
Myt = < ) ay COS wil (23)
&3
CL2\ 12
My = < ) ay sin wrt (24)
W
where
wp® = ety (25)

and a; is an amplitude constant. The last equation is the
well-known dispersion relation.
The ratio of the minor axis to the major axis of the

ellipse is given by
Cl¥\ /2
«=(ew) - o
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Ci'? and C3*' are given in terms of the original variables
in [11].

V. FirsT-ORDER SPINWAVE INSTABILITY

The first-order nonlinear spinwave instability is
usually the most important one because the amplitude
of the uniform mode is usually quite small even in the
nonlinear region. Introducing the coordinate transfor-
mation developed in [11] into the first-order nonlinear
equations gives

Hitggr = — Cp* ¥ Mgy My {mw[— sin (2ry—o) |

+m0y[COS (ZTk—¢k)]} v sin 6y cos 6
M,

o {mOx [cos ¢r—cos (27— )|

+1mgy[sin ¢u—sin (2r— i)} —ﬂ-;—o sin 6 cos 0, (27)
ity = Ci2Y —Miar { Mos[COS it cOS (27— ) ]

oy [sin grtsin (2r—gi) |} _]%; sin 6 cos 6

—May {Mog[—sin (27— ) ]

“+moy[cos 2ry—¢n) ]} IWY—O sin 6 cos 6. (28)

In this paper the various nonlinear thresholds are ob-
tained in terms of the components along the minor axis

Lo 2 - (O eS0T
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mk = iwkmk + ’Lmk*lfkl "o (32)

where f;, the coupling coefficient is given by

e et
{[(1 -+ -+
2
—1 —1, —1 2
+<ezek-—€ ;k )sinq&;;J

et (27
+ [( ettt 7) cos (2 — ¢x)

e e —1 2y 1/2 %
+ (—k — —I—C———> cos ¢k:| } ~— sin 0y, cos 6y.
2 2 Mo

Nonsynchronous terms have been omitted in (33).
Hence the important spinwaves are those that are syn-
chronous with half the frequency of the RF excitation.

An approximate solution to (32) is of the form
my exp(2(w/2+4K)t), where K is an adjustable param-
eter to be determined. Substituting this approximate
solution into (32) we obtain the standard result for the
instability threshold

w\2 yAHRN ]2
[(+-3) ()]
2 2
|72
where we have taken the damping of the spinwave into
account by adding a positive imaginary part YAH;/2 to

wr, where AH;, is the spinwave linewidth. We now write
| #0| in terms of | ko| with the help of (31); hence

e e

| fel =

. )sin (27'10 — ¢k)

(33)

orit

| 0 |crit =

of the spinwave ellipse.

By introducing complex variables the relation be-
tween the transverse components of magnetization of
the uniform mode is given from (15) and (16)

Moz = (mo + me™®) (29)

Wy my — mo* wo — mo*
Moy = ('— . = - (30)

w 1€p 1e
where
WO hoett
o = ( o ) 0 31)
—w? w2 2

mo* is the complex conjugate equation, and ¢ = (w/wr)e,.
The relation between the transverse components of
magnetization of the linear part of the spinwave mode
is given from (23) and (24).
Using the preceding identities the nonlinear coupled
equations can be reduced to a single equation given by

oW, l fk|

(3%)

In the last equation the damping to the uniform mode
is accounted for by introducing a positive imaginary
part YAH/2 to w, in (31), where AH is the uniform mode
linewidth. From the numerator of (35) we see that
20 =w, or w,=w, or both conditions produce a sharp
reduction in | %o| erit-

VI. MINIMIZATION PROCEDURE

In order to find the lowest threshold we have to mini-
mize the right-hand side of (35) as the applied dc field
is varied subject to the side condition wr=w/2.

From the dispersion relation at the subsidiary reso-
nance we have

Wex = 2(wm Sin2 0y + we)? + w2 — Loy sin? G sin? ¢ |12
— 3 (wm sin? B + wo) — (wo + Nowm). (36)

As the applied field is increased from zero the disper-
sion relation consists of two regions where 270 and
k=0.
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Fig. 4. Coordinates of unstable spinwave (unstable spinwave is
always in easy plane, ¢z=90°),

Equation (35) has been minimized using a computer
in the case of a sphere as a function of the dc field wo/w
for parametric values of w,/w with wn/w=0.6 subject to
the frequency condition given by (36). The computer
printout included 0%, ¢z, Wex, ex, @y, Wo, €9, and fi. In the
region where k>0 the frequency relation involves #,
0, and .

The coordinates of the unstable spinwaves in the two
regions where k70 and £ =0 are shown in Fig. 4. In the
region where k0, the unstable spinwave propagates in
the easy plane (¢r=90°) with 6, approximately given
by 0=~ 45°.

In the region where k=0, the allowed values of 8
and ¢y, are uniquely related by (36) with wex =0 once the
dc field is stated. In this region the minimum of the
butterfly curve occurred with ¢»=90° also and with 6y
determined from the frequency relation by

w?

z‘ - ((.00 - Nzwm)(wo - W _I_ wa)

sin? 6, = 37

N zwm)

wm(wo -

The dispersion relation ceases to yield a real value for
k with 8, =0 at a magnetic field given by

W + '\/m—(;;z
2

+ Nwm. (38)

Wy =

This last equation provides a convenient rule for the
existence of the subsidiary resonance.
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Fig. 5. Unstable spinwave elhpt1c1tv as a function of dc field wo/w

with wy,/w=

The unstable spinwave ellipticity is shown in Fig. 5.
Fig. 6 shows the RF threshold as a function of the reso-
nant field w,/w for parametric values of w,/w with wn/w
=0.6. Fig. 7 shows the same quantities as a function of
the dc field wo/w. From these two graphs we see that
one effect of the anisotropy field is to lower the RF
threshold field. Another effect is to shift the minimum
of the butterfly curve from a dc field below that required
for the main resonance through the coincidence region
to a dc field larger than that required for the main reso-
nance. In the coincidence region the butterfly curve is
seen to go to zero. This occurs because we have omitted
the uniform mode damping YAH/2 in our calculations.

In the easy plane fi is given with 7,=0° for w,/w
>wm sin? Ox/w, and with 7:=90° for w,/w <w, sin? 0;/w.
For ws/w=wn sin? 6;/w the spinwave ellipticity is unity
and f is independent of 4.

For wa/w> wm sin? 0 /w, (33) becomes

Wi
f}c = (1 -+ 6_'16]0_1) ——sin 0 cos 6.
M,

(39

VII. COINCIDENCE OF SUBSIDIARY AND
MAIN RESONANCES

As we can see from Fig. 7, it is possible for certain
configurations to satisfy the condition wr=w/2 simul-
taneously with w, =w. The critical field for the onset of
the spinwave instability is then particularly low. Such
limiting has been reported in single crystal YIG
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Fig. 6. RF threshold as a function of the resonant field w./w for parametric values of w,/w with w,/w=0.6.

[12], [13]. The lowest threshold now occurs at the [walV(@nlV:+ wi)]'* < w

main resonance and causes a reduction of the suscepti- 2 3w, \ZTVZH 12

bility at resonance. This is clearly shown in Fig. 7. For < — Nywom {5 + 4[1 + ( ) ] } . (40)
the coincidence condition to hold we must satisfy the 3 AN wwom

frequency condition given by (36) with 8,=0. This Equation (40) shows that the effect of the anisotropy
condition is only satisfied at low frequencies. Since the field is to reduce the coincidence region. Fig. 8 shows the

sample must be magnetically saturated the frequency coincidence region obtained for a sample of Mn—Zn,Y
range of application is [6], [15] single crystal ferrite biased in the easy plane. The ma-
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Fig. 7. RF threshold as a function of the dc ﬁeld wo/w for parametric
0.6.

values we/w With wy/w=

terial used was an Mn substituted Zn.Y single crystal
ferrite sphere with AH=716 Am~!, M,=0.24 Wm2,
H,=1783.8 kAm™!, and ¥ =2.060X10% rad s~1/Am~1.

For a linearly polarized wave in the easy plane, the
RF threshold is

2AHAH,
(1 4 ep e Y Mo/ 10

| hO lcrit = (41)
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Fig. 8. Coincidence threshold in an Mn—Zn,Y single crystal ferrite
biased in the easy plane.

Fig. 9. Coordinates for bias out of easy plane.

Equation (41) can be used to obtain the spinwave line-
width.

An approximate equation for the critical field in the
coincidence region has also been given in [6]. However,
it is not possible to make a direct comparison with it be-
cause the geometric factor 4 given in this reference does
not coincide with the magnetic quantities used here.

An absolute value for AH} has not been obtained be-
cause the authors did not obtain AH in the coincidence
region. It is well known that the uniform mode line-
width is a function of the direct magnetic field [16],

[17], [18].

VIII. COINCIDENCE OF SUBSIDIARY AND
MAIN REsoNaNCES wiTH THE DC
F1ELD OUT OF THE EASY PLANE

It is also possible to obtain coincidence limiting in
planar single crystal ferrite spheres biased out of the
easy plane. This leads to a new tunable coincidence
limiter. In the experimental arrangement considered
here the dc field Ho makes an angle 8 with the easy plane
of the crystal which is assumed to be in the y—3’ plane
and the ¢ axis of the crystal lies along the x’ axis of the
coordinate system, shown in Fig. 9. The prime coordi-
nate introduced here is not to be mistaken with the one
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Fig. 11. Coincidence threshold in Mn-Zn,Y ferrite sphere biased

out of easy plane.

introduced in connection with Fig. 3. With this arrange-
ment the magnetization M, is no longer in the easy
plane but makes an angle « to it, where in the case of a

sphere « is determined by [14]
2H,sin (8 — a) = H, sin 2a. (42)

In the perpendicular pump arrangement the RF field
is perpendicular to the magnetization M,. In what fol-
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lows the resultant direction of M, is therefore taken
along the unprimed z axis in Fig. 9. This means that
the unprimed transverse plane makes an angle « to the
¢ axis of the crystal. In the plane perpendicular to the
magnetization the linear parts of the spinwave and uni-
form modes have the same form as when the dc mag-
netization is in the easy plane provided new effective
dc and anisotropy fields are defined [10], [11].

Hy = Hycos (6 — o) — H,sin? «

H, = H, cos? a.

(43)
(44)

Tilting the dc field out of the easy plane therefore alters
the spinwave dispersion relation and Kittel's resonance
frequency.

In calculating the coincidence region it has been as-
sumed that the spinwave that first becomes unstable in
the unprimed transverse plane has the same coordinates
as in the case when the dc field is in the easy plane. The
coincidence region is therefore given by (40) with w,
and w, replaced by w,” and wy'.

For the Mn—Zn,Y single crystal ferrites studied in this
paper the coincidence region extends from 7550 to
9000 MHz when the dc field is in the easy plane and from
2900 to 4350 MHz when the dc field is perpendicular
to the easy plane. This is shown in Fig. 10. When the
dc field is perpendicular to the easy plane it is of the
order of the effective anisotropy field.

Fig. 11 shows the experimental coincidence region ob-
tained with an Mn—Zn,Y single crystal ferrite sphere for
three different values of 8. In the arrangement used the
RF field was in the easy plane along the y axis of the
crystal.

IX. CoNCLUSIONS

The onset of the nonlinear spinwave instability at
large RF power which can occur in hexagonal ferrites
with planar anisotropy has been derived. This has been
done in a simple way in terms of the physical variables
of the uniform and spinwave normal modes. The mea-
sured coincidence region is in good agreement with the
theoretical results. Coincidence measurements are also
given with the dc field out of the easy plane. This leads
to a new tunable coincidence limiter.
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An Improved Equivalent Circuit for the Thin-
Film Lumped-Element Circulator

REINHARD H. KNERR, MEMBER, [EEE

Abstract—A program written for the Hewlett-Packard automatic
network analyzer permits the S-parameter eigenvalue phases and
magnitudes to be displayed. The thus measured eigenvalues of a
lumped-element circulator lead to an improved equivalent circuit
which explains the observed “double hump” characteristic. The
influence of different circuit parameters on the eigenvalues is mea-
sured and found in good agreement with the author’s previously
published theory. It is concluded from this theory and the measure-
ments that, for the lossy circulator in general, maximum isolation,
return loss, and minimum forward loss do not occur at the same fre-
quency.

I. INTRODUCTION

N A PREVIOUS PAPER [1] the author developed
]:[ a theory on the thin-film lumped-element circulator

using the eigenvalue analysis [2]. The computer
results which were obtained from this theory improved
our understanding of circulators in general and were
applied to a new broad-banding principle [1], as well as
to a new switching principle for circulators [3].

The availability of a computerized network analyzer
has since made it practical to measure eigenvalue phases
and magnitudes as a function of frequency using the
proper computer program. These measurements have
permitted the principal results of the theory to be veri-
fied and have revealed additional information that has
led to an improved equivalent circuit for the thin-film

7Manuscript received September 15, 1972; revised January 21,
1972.
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lumped-element circulator. Furthermore, the study has
advanced our understanding of the losses in the lumped-
element circulator and has permitted us to draw conclu-
sions as to the behavior of lossy circulators in general.

I1I. COMPARISON OF THE EXPERIMENTAL LUMPED-
ELEMENT CIRCULATOR WITH THE CALCULATION
FOR THE EARLIER EQUIVALENT CIRCUIT

The broad-band thin-film lumped-element circulator
(described in a previous paper by the author [1]) is
shown schematically in Fig. 1. It uses the crossover
capacitances as the sole means of resonating the circu-
lator junction. Broad-band behavior is achieved with a
capacitor formed by the dielectric layer between the
metal film and ground plane of Fig. 1. This capacitor is
designated Cy in Fig. 2, which shows the approximate
equivalent circuit of the structure in Fig. 1. The cross-
over capacitances are represented by the discrete ca-
pacitors Cy, while the split conductors of Fig. 1 are de-
lineated by the inductors L, which are functions of the
angular frequency w, the geometry -factor [1] G, the
saturation magnetization, and the applied magnetic
biasing field Hg.

From this structure and its analysis [1] it was de-
duced that the capacitor C, influences only the eigen-
value of the in-phase excitation, and the capacitors Cy,
i.e., the crossover capacitances, influence only the eigen-
values due to the rotating excitations or eigenvectors.
(For details on eigenvalues and eigenvectors see the



